
AI 
- think like humans / rationally 
- act like humans /rationally 
- . weak ai - act smart,  
- . strong ai - conscious !
[ T: Theorem ] 
Search > Uninformed 
[ Fringe: , Expanded: , ] 
[ N.=Node I=Implementation ] 
BFS 
- Expands Shallowest unexpanded N. 
- ( I: put children of the Expanded N. at the 

end of the fringe ) 
- Complete: Yes (if b is finite) 
- Optimal: No in General (Yes if Step Cost 

is the same) 
- Time: 1+b+b^2+...b^d = O(b^d), expontnl 
- Space: O(b^d), (keeps every node in 

memory) 
Uniform Cost (UCS) 
- Expands Least-Cost Unexpanded N, g(n) 
- ( I: insert nodes in the fringe in order of 

increasing path cost From the root ) 
- Complete: Yes, if step cost > 0 
- Optimal: Yes 
- Time & Space:  

#N. with g≤cost of Optimal Soln O(b^d), 
(depends on path costs, not depths, 
difficult to caterize in terms of b, d) 

- UCS = BFS, when g(n)=depth(n) 
DFS 
- Expands Deepest Unexpanded N 
- ( I: insert successors at front of fringe ) 
- Complete: No, fails in infinite-depth spaces 

(i.e. m= ∞) 
- Optimal: No 
- Time: 1+b+b^2+...b^m = O(b^m), (higher 

than BFS, as M>>d (m=max depth, d=least 
cost soln path) ) 

- Space: O(bm), linear, excellent. 
Depth Limited Search 
- DFS w/ depth limit l 
- Complete: No in general, Yes in finite spc. 
- Optimal: No 
- Time: 1+b^2+...b^l= O(b^l) (as BFS) 
- Space: O(bl) (as DFS) 
Iterative Deepening (IDS) 
- Expands deepest unexpanded node within 

level l. 
- Complete: Yes (as BFS) 
- Optimal: Yes, if step cost=1 (as BFS) 
- Time: O(b^d) (as BFS) 
- Space: O(bd), linear (as DFS) 
- ( can be modified to explore uniform-cost tree ) !
Search > Informed (heuristic) 
(+ve over uninformed, Knows if a non-goal 
node > another, typically more efficient ) 
[ Best First Search Algorithms : Expands the 
most desirable unexpanded node] 
[ N=Node, g(n)=pathCost, h(n)=heuristic ] 
Greedy 
- Expands N. with smallest h(n). 
- Complete: Yes, in finite space. Fails in ∞ 

space (+ can get stuck in loops) 
- Optimal: No. 
- Time: O(b^m), but good heurstic can 

Improve lots. 
- Space: O(b^m), keeps every node in 

memory 
- Greedy=BFS, h(n) = depth(n), ties+ L}R 
- Greedy=DFS, h(n)=-depth(n), ties+ 

deepest 1st. 
- Greedy=UCS, h(n)=g(n) 
A* (Tree Search) 
- Expands N. with smallest f(n)=g(n)+h(n) 
- T: If h is an admissible heuristic, than A* is 

Complete And Optimal. (only w/ Tree S.) 

- T: If h is consistent, than A* is Optimally 
Efficient, among all optimal search 
algorithms. (always true ^v) (It will not 
revisit states (as in graph search) ). 

- Complete: Yes, unless there are ∞’ly many 
nodes with f≤f(G), G–Optimal Goal State 

- Optimal: Yes, with admissible heuristic 
- Time: O(b*^d),exponential, b*=effective 

branching factor 
- Space: Exponential, keeps all nodes in 

memory. 
- [ Both Time&Space are probs for A*, 

typically running out of SPACE b4 time] 
May be better to settle for a non-admissible 
h that works well even though 
completeness and optimality are no longer 
guaranteed. Simpler, faster h may be better 
even though more N.s expan+. 

- A*=UCS, if h(n)=0 for all N. 
A* (Graph Search) 
- If h is admissible, Complete & Optimal, if 

revisting repeated (:||) states allowed 
(reopening closed N.s), else not optimal. 

- If h is Consistent, we avoid :|| states. 
- Enforced Consistency, using ‘PathMax’: 

set child’s f value to parent’s f value. 
( If done as we search, may not solve 
problem of reopening N.s from Closed. 
Better to ensure before search starts that 
h(n) is consistent ). !

Heuristics ( h(n) ) 
- Admissible h(n) are optimistic (smaller 

than true cost). e.g. SLD. 
- Dominance, when an Admissible Heuristic 

is better than another admissible one. A 
better estimate of true $ to G, and 
expanding fewer nodes in A*. 

- Inventing, h(n)’s by creating for a relaxed 
version of prolem (1 w/ less restrictions on 
the actions) 
[ T: $ of an optimal soln to a Relaxed 
problem is an Admisible h(n) for the 
Original problem. ] 

- (composite heuristics 
h(n)=max{h1(n),h2(n)...} are admissible, 
good to use when there’s a bunch of h(n), 
none dominating one another, composite 
will Dominate.) 

- Consistent (monotonic) Heurisic, if all 
such pairs in the search graph satisfy the 
triangle inequality: 
[ h(ni),par. ≤ cost(ni,nj)+h(nj),chi. for all n ]  
• f(nj),child ≥ f(ni),parent : f is non-
decreasing along any path 

- ( Admissible ( Consistent ) ) !
Local Search Algorithms 
(Optimisation Problems) 
Hill-Climbing 
- Finds closest local min.imum / max.imum. 

(may not be global) 
- Soln found depends on Initial State: 

Can run several times starting from ∂ rand. 
points. 

- Plateus: (random walk - no change in v, 
wander endlessly, revisiting prev. N.s):  
Can keep track of # of times v is the same 
and don’t allow revisitng of nodes w/ same 
v. 

- Ridges: (cur. local max. not good ‘nuff): 
Can combine 2/+ moves in a macro, or 
allow limited # of look-ahead search !!!!!!!

!!
Beam Search 
- Keeps track of k BEST states (not 1) 
- (• 2 vrsns: 1. start w/ 1 given state OR 2. k 

randomly generated states 
• At each iteration (lvl): gen.erate all 
successors of all k states 
• If any one is a goal state, stop; else select 
k best successors and continue. ) 

$  
- Can be used w/ A*, +ve: memory efficieny, 

-ve: !complete, !optimal  
- Variations: Keep only nodes that are at 
most €(beam width) worse than best N. 

Simulated Annealing 
- (similar to hill climbing, but selects random 

successor) 
- (• select initial state s. set cur. N. to s  

• Randomly select m, one of N.’s succssrs 
• if v(m) > v(n), n=m //accept m  
  else n=m w/ small probability  
  //accept m w/ small prob.  
• Anneal T, • Repeat xtimes/goodnuff ) 

- Probability: P = e^( (v(m)-v(n))/T )  
i.e. bad move v(n)>v(m) asuming looking 
for min., P decreases expo. w/ badness of 
move. 

- T decreases, anneals, w/ time, e.g. T*=.8 
- Thrm: If schedule lowers T slowly enough, 

algorithm will find global optimum. 
Complete & Optimal, given a long enough 
cooling schedule. 

- Difficult to set “slowly enough” (T). 
Genetic Algorithms 
- (• Select best individuals, from fitness f() 

• CrossOver, about an init random point 
• Mutate, random change of bits) 

- Success depends on representation 
(encoding) 

- !complete, !optimal !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!
Games 
[ Deterministic vs Chance ] 
[ Perfect vs Imperfect ] 
[ Zero-Sum vs Non-0-∑ : (1 P’s gain is 
another’s loss) ] 
(Processes forward, !backward from goal, 
cause often too many goal states. + if goal 
state too far, will not provide any useful info 
on termination otherwise) 
MinMax Algorithm 
- Perfect, Deterministic, Assumes both P’s 

(Max, Min) play optimally 

$  
- Only O(bd) nodes need be kept in memory 

at a time 
- If Min doesn’t play optimally, Max will do 

even better. 
- Implemented as DFS 
- Assumptions: branching factor b, all 

terminal Nodes ad depth d. 
- Optimal: Yes. 
- Time: O(b^m) as in DFS – main Problem. 
- Space: O(bm) as in DFS 
Alpha Beta Pruning 

$  

$  
- Pruning doesn’t effect final result 
- Worst Case: No Pruning: O(b^d) 
- Best Case: Perfect Ordering O(b^(d/2)) 
Imperfect 
[ Both MinMax & AlphaBeta require too 
much time ] 
i.e. Heuristic Evaluation at leaf nodes. 
- Probs: Horizon Effect (hidden pitfalls) 
- - Soln: Evaluation f() should be applied 

onlty to positions that are quiescent, 
unlikely to change extremely in near future. 
+ Secondary Search, extending search to 
make sure there’s no hidden pitfall. 

ExpectMinMiMax 
(Non-deterministic Games) 
- Time: O(b^m . n^m) n=# of distinct dice 

rolls. 

$  !!!!!!!!



!
Machine Learning [ Supervised, 
Unsupervised, Reinforced, Associations 
Learning ] !
Supervised Learning 
( Classification - categorical, 
Regression - Numeric ) 
NEAREST NEIGHBOUR 
- (or distance/instance-based learning) 
- An eg. of Lazy Learning, stores all training 

eg.s + doesn’t build a classifier until new 
eg. needs to be classified. - Opposite to 
Eager learning (constructing classifier 
before recieving new eg.s, like1R,DT,NB..) 

- Lazy classifiers are Faster at 
training(=memorizing), but Slower at 
classification. 

- Nearest determined by distance 

$  
- Need for Normalization, as when 

calculating distances between 2 examples, 
the effect of the attributes with smaller 
scale will be less significan than those 
larger. i.e. Normalize (between 0 and 1) 

- Training=Fast, no model built, just storing. 
- Classification>Lookup: O(mn), m training 

examples w/ dimensionality n. 
- Memory: O(mn), need remember each eg 
- BAD for large datasets, slow. 
K-Nearest Neighbour 
- k majority voting 
- Very Sensitive to value of k, general rule: 

[ k ≤ sqrt(#training_egs) ] 
- Also usable w/ numeric prediction 

(regression) by averaging values. 
- Distance for Nominal Attributes: 

0 - ∂ the same, 1 otherwise 
- for Missing Values:  

0 - both same & NON-MISSING, else 1 
(if numeric, d=max(v, 1.0-v)) 

- d((red, new, ?, ?, ?),(blue, new, ?, 0.3, 0.8)) 
= 1 + 0 + 1 + 0.7 + 0.8 

- Variation: Weighted Nearest Neighbor 
- Closer neighbors count more than distant 

neighbours. Instead of k, all training egs. 
- Weight Contribution based off distance to 

new example: 

$ -ve: slower algorithm 
- Curse of Dimensionality: NN great in low 

dimensions (up to 6), but become 
ineffective as dimensionality increases. As 
more examples are far from one another, 
and close to the boundaries. (Notion of 
nearness becomes ineffective in high-dim 
space) 
Soln: Feature selection (attrs) to reduce 
dimensionality. 

- Produces arbitarially shaped decision 
boundary defined by a subset of the 
Voronoi edges. 

- Sensitive to Noise 
- Standard algorithm makes predictions 

based on LOCAL info. 1R, DT, NNs, try to 
find a GLOBAL model that fits training set. !!!!!!!!!

!
1-RULE 
- For each attribute value makes rule by 

majority class. Calculates error rate of 
rules. Chooses rule w/ smallest error rate. 

- Missing Values: 
Treated as another attribute Value 

- Nominal Attributes are discretized to 
nominal. - May lead to overfitting due to 
noise in data - Soln: impose min num of 
egs of majority class in each partition, 
merge. 

- Simple, Computationally Cheap. !
NAIVE BAYES 
(Statistical-Based Classification) 
- P(H|E) = P(E|H).P(H) / P(E) 
- P(yes|E)= P(E1|yes).P(E2|yes).P(yes)/P(E) 

• (all P(Ex|yes) have same denominator) 
- Assumes attributes are equally important 

and independent of one another. 
- Laplace Correction to handle Zero-

Numerators. (add 1/Num_Attrs to all attrs.) 

 $  
- (note, in tut examples, only the value is ∂d, not cousins ) 
- Missing Nominal Values: Ommit Value 

from P(yes|E) and P(no|E) counts. 
- If Numeric: Calc. Probability Distribution 

using the Probability Densitiy Function 
(assuming normal distribution). µ=mean, 
Ó=sd. 

$ $  
- +ves: • simple,  

• Excellent Computational Complexity: 
Requires 1 scan of the training data to 
calculate statisics (for both nominal & 
continuous attributes assuming normal 
distribution). O(pk), p=#training_egs, 
k=valued_attributes 
• Robust to isolate noise points (avgd out) 

- -ves: • Correlated attributes reduce power 
(violation of independence assumption) - 
Soln: feature selection b4hand. 
• many numeric features not normally 
distrubted - Soln: other types of 
distributions /transform attribute to normally 
distributed one /discretize data first. !

Evaluating Classifier 
- Holdout Procedure - split data into 2 

independent sets;Training & Test (~2/3,1/3) 
- Accuracy (Success Rate) = 1.0 - Error Rate 
- Validation Set (for DTs, NNs) - Classifier 

built from Training Set, - Tuned w/ 
Validation Set, Evaluated w/ Test Set. 
• DTs - training set used to build tree, 
validation set used to prune, test to eval 
• NNs - validation set used to stop training, 
prevent overtaining. 

- Prob: egs in training set may not be 
representative of all classes. 
Soln: Stratification, ensures each class is 
represented w/ ~= proportions in both sets. 

- Holdout more reliable by repeating 
(Repeated Holdout Method) - which can be 
improved by ensuring Test sets don’t 
overlap - Cross Validation. 

- Leave-One-Out Cross Validation - n-fold 
cross-validation, where n=#Egs in data set. 
• +ve: greates possible amount of data 
used, deterministic procedure. 
• -ve: high computation cost 
i.e. more useful for small data sets !!

!
Comparing Classifiers 

!  

!  
Confusion Matrix 
(remember accuracy=(tp+tn)/(tp+tn+fp+fn)) 

$  
Where retrieved=#retrievedDocs, relevant=#relDocs 
Precision = (R+R)/Retrieved 
Recall = (R+R)/Relevant !
Inductive Learning 
- Supervised Learning is Inductive Learning. 
- Induction: inducing the universal from the 

particular. 
- We can generate many hypothese h, the 

set of all possible h form the hypothesis 
space H, a good h will generalize well (i.e. 
predict new egs correctly). 

- Choice of H important (eg sin.f() vs polyn). 
- Empirical Evaluation: - best thing we can 

do. (Test data). !
DECISION TREES 
- ( top-down recursive divide-and-conquer ) 
- Growing the tree: hill climbing search 

guided by information gain. 
- Can represent any boolean function. 
- Compact Decision tree with most pure 

(high entropy) attributes. Entropy is 
measured in bits. For binary classification; 
value:0.5=1bit, value:0or1=0bit. 

- Entropy H(Y) measures: • the disorder of a set of 
training egs w/ respect to class Y. • shows the 
amount of surprise of the receiver by the answer 
Y based on probability of answers • the smallest 
# of bits per symbol (on avg) needed to transmit a 
stream of symbols drawn from Y’s distribution. 

- Information Gain is the expected 
reduction in entropy caused by the 
partitioning of the set of examples using 
that attribute. 

$  
- ( DT: The best attribute has Highest Gain ) 
- Overfitting, due to DTs growing each 

branch deeply to perfectly classify, coupled 
with noise in training data, +/or small 
training set. Soln: Pre/Post-Pruning. 

- Stop Pruning: Estimate accuracy w/ 
validation set (acts as safety net), however 
tree is built on less data. 

- Post-Pruning > Tree Pruning: 
• Sub-Tree Replacement:  
 - start from leaves+work to root.  

 - $  
 - continue iteratively till further pruning=harmful  
• Sub-Tree Raising 
 - potentially time consuming operation, 
restricted to raising the sub-tree of most 
popular branch. 

- Post-Pruning > Rule Pruning: 
• Grow Tree • Convert tree to equivalent set of rules by 
creating 1 rule per path (if statement) • Prune each rule 
by removing any pre-conditions that result in improving 
estimated accuracy • Sort pruned rules by estimated 
accuracy, consider in this sequence when classifying 
subsequent instances. 
• Converting DT to Rules Be4 Pruning: Provides 
bigger flexibility, when trees are pruned; can 
only remove node completely or retain. when 
rules are pruned there are less restrictions: pre-
conditions, not nodes, are removed. each branch 
in tree (i.e. each rule) treated separately. 
removes distinction between attribute tests that 
occur near the root of the tree and those near the 
leeves.  
• +ve > trees, easier to read. 

- Numerical attributes need discretization, in 
DTs we’re restricted to binary split. 

- Problem: if an attribute is highly-branchng 
then likely selected by Information Gain, 
can lead to Overfitting.  
Soln: Gain Ration, a modification of the 
Gain that reduces its bias towards highly 
branching attributes.  

$  
- Missing values: handled by • unique value 

• A(x)=most common value among training 
egs at n w/ class(x) • sample fractioning 
strategy - assign probability to each 
possible value of A, calc prob.s, use 
frequencies of values of A among 
examples at n 

- Attributes w/ Different Costs, Incorporating 
cost in Gain (penalizing attrs w/ high cost) 

- $  
- Efficient:  

• Cost of Building tree O(mnlogn), n-
instances and m attributes. 
• Cost of pruning tree w/ sub-tree 
replacement O(n) 
• Cost of pruning by subtree lifting  
O(n(logn)^2) 
• ∑ (build+prune): O(mnlogn)+O(n(logn)^2) 

- Resulting Hypthoese Easy to interpret by 
humans if DT not too big. !!!!!!!!!!!!!!



!
NEURAL NETWORKS 
( Perceptron - StepTransferF(), Forms linear Decision Boundary ) 

$  

$  
- Limitations: • Binary Output • if training 

examples are linearly separable, 
guarantees a soln in finite # of steps.  
• Doesn’t try to find ‘optimal’ line. 

- (The weight vector is orgthoganal to the 
decision boundary. ) !

BACKPROPAGATION ALGORITHM 
- (Powerful, Can learn Non-Linear Decision 

Boundaries, but difficult to Tune) 
- (Uses Steepest descent algorithm for 

minimizing the mean square error) 
- Multi-Layer NNs trained w/ 

backpropagation popular. 
- To learn input-output (I/O) mapping - Error 

F() formulated (eg. ∑ of squared errors 
between target & actual output) & use a 
learning rule that Minimizes this error. 

$  
- a Feedforward netowrk, a Fully conected 

network (typically), weights initialized to 
small rand. values. 

$  
- Numerical data requires no Encoding, 

unlike nominal - typically binary encoded. 
- Output Encoding: 

$  
- Heuristic to start w/ : 1 hidden layer w/ n 
hidden neurons, n=(inputs+ouput_nurons)/2 
- BackPropagation (BP) adjusts weights 

backwards by propagatong the weight ∂. 
- An optimization search (hill climbing) in the 

weight space. Using Steepest Gradient 
Descent, ∏ learning rate, definies step 
(quickness moving downhill). May not find 
global min. (local instead).  

- Can adjust weights by: 1. Incremental - 
after each training example is applied - 
liked.requires less space. 2.Batch - weights 
adjusted once all training examples are 
applied and a total error calculated. 

$  

$  

$  
- Every Boolean f() of incputs can be 

represented by network with a single 
hidden layer. 

- Any continuous f() can be approximated w/ 
arbitrary small error by a network w/ 1 
hidden layer. Any f() (inc. discontinuous) 
~‘able to arbitrary small error by a network 
w/ 2 hidden layers. 

- Overfitting, occurs w/ Noise, OR when # 
of free (trainable) params is bigger than # 
of training examples. OR network been 
trained too long. 
Soln: • Use network that’s “just large enuff”, 
• network shouldn’t have more free params 
than there are training egs. 
• Validation Set can be used to STOP 
traning if error increases for a pre-specified 
# of iterations, the weights,bias’ at the min. 
are returned. 
• Prob w/ Validation Sets: Small data sets. 
Soln 2x: K-Fold Cross Validation, get mean 
number of optimum epochs. Final Run: 
train network on ep_mean. 

- With Gradient Descent:  
Small Learning Rate = slow Convergence. 
Large Learning Rate = oscillation, 
overshooting of minimum. Momentum 
used to stabilize the algorithm. 

$  
- (All layers have bias’ !input) 
- (BP iterates till it minimizes the sum of the 

squared errors of the output values over all 
training examples). !

Support Vector Machines 
- 1. Maximize margin. 
- 2. Transform data into a higher 

dimensional space where it’s more 
likely to be linearly separable 
( not to high tho, overfitting danger ) 

- 3. Kernel Trick - Do calculations in the 
original, not the new higher di. space. 

        $  
( “Kernel function of the new vector and the 
support vectors”, instead of dot product ) 
(Mercer’s T: restricts the class of usable f()s K) 
- Scales well in high dimensions. 
- Multi-Class problems need to be 

Transformed to 2 class problems. 
(Slows them down). 

- Compared to Perceptrons (‘linear 
only’), and Backpopragation NNs 
(‘tuning,localMinima’) (which SVM can 
reduce too), SVM’s: are relatively 
efficient training algorithms that can 
learn non-linear decision boundaries. 

- SVM: an optimization problem using 
Lagrange multipliers (/\) to maximize 
the  margin of the decision boundary.  

- Margin Width: d=2/||w|| 
- Linear Constraint: $  

$  

$  
w: the optimal decision boundary: 

 $  
- Soft Margin: allows some 

misclassifications. Tradeoff between 
margin width & #misclassifications. 
Soln is same as w/ hard margins but 
there is an upper bound C on values 
of /\s. !

Ensemble of Classifiers 
[Works when individual classifiers are highly 
accurate and diverse (uncorrelated, don’t 
make same mistake. Generated by 
manipulating ...), & when base classifiers are 
good ‘nuff i.e. better than random guessing] 
[Enlarges Hypothesis Space] 
 | 
(Manipulating Training Data) 
Bagging “Bootstrap Aggregation” 
- Majority Vote 
- • Creates M Bootstrap samples • each 

sample used to build a classifier • classify a 
new eg by getting majority vote 

- Effective for Unstable classifiers, (small ∂s 
in the training set results in large ∂s in 
predictions, e.g. DTs, Neural Networks). 
May slightly decay performance of stable 
classifiers (e.g. k-nn). 

- Applicable to regression (votes avg’d) 
Boosting 
- Combo of weighted votes 
- • each training weight has associated 

weight • higher the weight, more imporant 
the eg during training. 

- • training eg weights init = 1 • generate 
classifier • correctly classified egs decrease 
in weight + vice versa • repeat • finally 
combine the M hypothese, each weighed 
according to performance on training set 

- Adaboost - typically performs better than 
individual classes.  
- If base learning algorithm is a weak 

learning algorithm, then AdaBoost will 
return a hypothesis that classifies the 
Training data Perfectly for Large enough M. 

- Boosting fails if indi. classifiers 2 ‘complex’ 
- Boosting allows building a powerful 

combined classifier from Very simple ones, 
eg. Simple DTs generated by 1R. 

Bagging vs Boosting 
- Similarities: • Use voting (for classification) 

and averaging (for prediction) to combine 
the outputs of the individual learners. • 
Combimes models of the Same Type 

- Differences: • Bagging builds individual 
models separately, Boosting builds them 
iteratively. • Bagging weighs opinions 
equally, Boosting weights by performance. 

- Boosting, typically more Accurate. 
- but Boosting more sensitive to Noise. 
 | 
(Manipulating Attributes) 
Random Forest 
- Bagging & Random selection of features 

(this generates diversity, reducing 
correlation) 

- Proven that RF does not overfit. 
- RF Faster than Adaboost, gives 

comparable accuracy results. 
 | 
(Manipulating Learning Algorithm) 
- Same learning algorithms applied to same 

dataset but w/ ∂ params (e.g. NNs w/ ∂ 
architecture / params ). Train them on 
same training data to create M classifiers, 
which can output a Majority Vote. 

 | 
(Using a Meta-Learner) 
Stacking 
- Instead of voting, uses a (level-1) 

metalearner to learn which (level-0) base 
classifiers are reliable. 

- Seperates training data into training, 
validation sets, trains level-0 classifiers, 
applies validation set to classifiers and use 
the predictions to build training data for 
level-1 model above  

-  - could use cross validation instead of 
training & validation sets. Slow, but allows 
level-0 full-use of data.  

- level-0 base learners do most work, level-1 
can be just a simple classifier. 

- Can be applied to numeric predictions, 
instead of a class-value a numeric target 
value is attached to level-1 training eg !!!!!!!!!!!!!!!!!!!!!!!!!!!



Unsupervised > Clustering 
(don’t know class labels, may not know 
#classes, want to group similar egs) 
[ Single link (MIN), Complete link (MAX), 
Average link (avg distance between each 
element in one cluster to each ele. in other) 
Centroid, Medoid ] 
{ Good Clustering produces: High Cohesion. 
High Separation. as measured by a distance 
function such as Davies-Boulding index 
(prefferably small) } 

$  
[ Types: • Partitional - creates one set of 
clusters • Hierarchical • Density-based • 
Model-Based (generative) • Fuzzy Clustring] 
K-Means Clustering Algorithm 
- Requires k, #clusters, to be specified. 
- • select K points as initial centroids • 

(Repeat: • form K clusters based on closest 
centroid • recompute centroid of each 
cluster) Until: Centroids don’t ∂ 

- Issues: • data should be normalized 
• nominal data needs to ∂ to numeric 
• #epochs for convergence typically much 
smaller than #points, converges quickly :)  
• Stopping Criterion usually e.g. <1%, not 
==. • SENSITIVE to choice of Initial Seeds 
(could run several times w/ ∂ initial 
centroids) 

- Not sensitive to order of input egs :) 
- Doesn’t work well for clusters w/ non-

spherical / non-convex shapes. 
- Doesn’t work well w/ data containing 

Outliners (Soln: preprocess, cut outliers) 
- Space: Modest; O( (m+k)n ), m=#egs, 

n=#attributes, k=#clusters 
- Time: Expensive; O(tkmn), t=#iterations 
- Not Practical for Large datasets. 
- Can be viewed as an optimization problem; 

find k clusters that minimize SSE. 
- May find local minimum instead of global. 
- Variations: • improving chances of finding 

global min. ; ∂ ways to initialize., allow 
splitting&merging of clutsers. 
• can be used for hierarchical clustering, w/ 
k=2 & recursively :|| w/ each cluster. 

K-medoids 
- Use medoid instead of cluster means. 
- Reduces sensitivity to outliers 

$  
- Computationally expensive, not suitable for 

large databases: Time: O(n(n-k)), Space:
(O(n^2)-needs proximity matrix). 

- Doesn’t depend on order of examples. 
- Can be used when oly Distances are given 

and not raw data. 
Nearest Neighbor Clustering Algorithm 
- 1 pass algorithm, Partitional algorithm. 
- Sensitive to Input Order. 
- Puts ite,s in cluster of itself, single-link 

distance between item and new cluster, 
threshold t determines merging/creation. 

- Space & Time: O(n^2), n=#items !!!!!

(Hierarchical Clustering) !  
- Suitable for domains w/ natural nesting 

relationships between clusters 
- Computationally Expensive, limiting 

applicability to high dimensional data :( 
Space: O(n^2), n=#items, to store proximity 
distance matrix & dendrogram. 
Time: O(n^3), n levels, at each of them, 
n^2 proximity matrix must be searched & 
updated (reducable to O(n^2 .logn) if 
distances store in sorted list. 

- Not Incremental, assumes all data static. 
Aglomerative Clustering 
- bottom up, merges clusters iteratively (w/

single-link (min) clustering) 
- • d=0 • compute proximity matrix • let each 

data pt be a cluster • (Increment d, merge 
clusters w/ dist ≤ d, update Proximity 
Matrix [DRAW] :|| ) 

- using Complete Link, is less sensitive to 
Noise and Outliers than Single Link. 
Generating more compact clusters. 

Divisive Clustering 
- top-down, splits clutster iteratively. reverse 

of agglomerative, less popular. 


