
AI
- think like humans / rationally
- act like humans /rationally
- . weak ai - act smart,
- . strong ai - conscious !
[T: Theorem]
Search > Uninformed
[Fringe: , Expanded: ,] 
[N.=Node I=Implementation]
BFS
- Expands Shallowest unexpanded N.
- (I: put children of the Expanded N. at the

end of the fringe)
- Complete: Yes (if b is finite)
- Optimal: No in General (Yes if Step Cost

is the same)
- Time: 1+b+b^2+...b^d = O(b^d), expontnl
- Space: O(b^d), (keeps every node in

memory)
Uniform Cost (UCS)
- Expands Least-Cost Unexpanded N, g(n)
- (I: insert nodes in the fringe in order of

increasing path cost From the root)
- Complete: Yes, if step cost > 0
- Optimal: Yes
- Time & Space:  

#N. with g≤cost of Optimal Soln O(b^d),
(depends on path costs, not depths,
difficult to caterize in terms of b, d)

- UCS = BFS, when g(n)=depth(n)
DFS
- Expands Deepest Unexpanded N
- (I: insert successors at front of fringe)
- Complete: No, fails in infinite-depth spaces

(i.e. m= ∞)
- Optimal: No
- Time: 1+b+b^2+...b^m = O(b^m), (higher

than BFS, as M>>d (m=max depth, d=least
cost soln path))

- Space: O(bm), linear, excellent.
Depth Limited Search
- DFS w/ depth limit l
- Complete: No in general, Yes in finite spc.
- Optimal: No
- Time: 1+b^2+...b^l= O(b^l) (as BFS)
- Space: O(bl) (as DFS)
Iterative Deepening (IDS)
- Expands deepest unexpanded node within

level l.
- Complete: Yes (as BFS)
- Optimal: Yes, if step cost=1 (as BFS)
- Time: O(b^d) (as BFS)
- Space: O(bd), linear (as DFS)
- (can be modified to explore uniform-cost tree) !
Search > Informed (heuristic)
(+ve over uninformed, Knows if a non-goal
node > another, typically more efficient)
[Best First Search Algorithms : Expands the
most desirable unexpanded node]
[N=Node, g(n)=pathCost, h(n)=heuristic]
Greedy
- Expands N. with smallest h(n).
- Complete: Yes, in finite space. Fails in ∞

space (+ can get stuck in loops)
- Optimal: No.
- Time: O(b^m), but good heurstic can

Improve lots.
- Space: O(b^m), keeps every node in

memory
- Greedy=BFS, h(n) = depth(n), ties+ L}R
- Greedy=DFS, h(n)=-depth(n), ties+

deepest 1st.
- Greedy=UCS, h(n)=g(n)
A* (Tree Search)
- Expands N. with smallest f(n)=g(n)+h(n)
- T: If h is an admissible heuristic, than A* is

Complete And Optimal. (only w/ Tree S.)

- T: If h is consistent, than A* is Optimally
Efficient, among all optimal search
algorithms. (always true ^v) (It will not
revisit states (as in graph search)).

- Complete: Yes, unless there are ∞’ly many
nodes with f≤f(G), G–Optimal Goal State

- Optimal: Yes, with admissible heuristic
- Time: O(b*^d),exponential, b*=effective

branching factor
- Space: Exponential, keeps all nodes in

memory.
- [Both Time&Space are probs for A*,

typically running out of SPACE b4 time] 
May be better to settle for a non-admissible
h that works well even though
completeness and optimality are no longer
guaranteed. Simpler, faster h may be better
even though more N.s expan+.

- A*=UCS, if h(n)=0 for all N.
A* (Graph Search)
- If h is admissible, Complete & Optimal, if

revisting repeated (:||) states allowed
(reopening closed N.s), else not optimal.

- If h is Consistent, we avoid :|| states.
- Enforced Consistency, using ‘PathMax’:

set child’s f value to parent’s f value. 
(If done as we search, may not solve
problem of reopening N.s from Closed. 
Better to ensure before search starts that
h(n) is consistent). !

Heuristics (h(n))
- Admissible h(n) are optimistic (smaller

than true cost). e.g. SLD.
- Dominance, when an Admissible Heuristic

is better than another admissible one. A
better estimate of true $ to G, and
expanding fewer nodes in A*.

- Inventing, h(n)’s by creating for a relaxed
version of prolem (1 w/ less restrictions on
the actions) 
[T: $ of an optimal soln to a Relaxed
problem is an Admisible h(n) for the
Original problem.]

- (composite heuristics
h(n)=max{h1(n),h2(n)...} are admissible,
good to use when there’s a bunch of h(n),
none dominating one another, composite
will Dominate.)

- Consistent (monotonic) Heurisic, if all
such pairs in the search graph satisfy the
triangle inequality: 
[h(ni),par. ≤ cost(ni,nj)+h(nj),chi. for all n]  
• f(nj),child ≥ f(ni),parent : f is non-
decreasing along any path

- (Admissible (Consistent)) !
Local Search Algorithms
(Optimisation Problems)
Hill-Climbing
- Finds closest local min.imum / max.imum.

(may not be global)
- Soln found depends on Initial State: 

Can run several times starting from ∂ rand.
points.

- Plateus: (random walk - no change in v,
wander endlessly, revisiting prev. N.s):  
Can keep track of # of times v is the same
and don’t allow revisitng of nodes w/ same
v.

- Ridges: (cur. local max. not good ‘nuff): 
Can combine 2/+ moves in a macro, or
allow limited # of look-ahead search !!!!!!!

!!
Beam Search
- Keeps track of k BEST states (not 1)
- (• 2 vrsns: 1. start w/ 1 given state OR 2. k

randomly generated states 
• At each iteration (lvl): gen.erate all
successors of all k states 
• If any one is a goal state, stop; else select
k best successors and continue.)

$
- Can be used w/ A*, +ve: memory efficieny,

-ve: !complete, !optimal  
- Variations: Keep only nodes that are at
most €(beam width) worse than best N.

Simulated Annealing
- (similar to hill climbing, but selects random

successor)
- (• select initial state s. set cur. N. to s  

• Randomly select m, one of N.’s succssrs 
• if v(m) > v(n), n=m //accept m  
 else n=m w/ small probability  
 //accept m w/ small prob.  
• Anneal T, • Repeat xtimes/goodnuff)

- Probability: P = e^((v(m)-v(n))/T)  
i.e. bad move v(n)>v(m) asuming looking
for min., P decreases expo. w/ badness of
move.

- T decreases, anneals, w/ time, e.g. T*=.8
- Thrm: If schedule lowers T slowly enough,

algorithm will find global optimum.
Complete & Optimal, given a long enough
cooling schedule.

- Difficult to set “slowly enough” (T).
Genetic Algorithms
- (• Select best individuals, from fitness f() 

• CrossOver, about an init random point 
• Mutate, random change of bits)

- Success depends on representation
(encoding)

- !complete, !optimal !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!
Games
[Deterministic vs Chance]
[Perfect vs Imperfect]
[Zero-Sum vs Non-0-∑ : (1 P’s gain is
another’s loss)]
(Processes forward, !backward from goal,
cause often too many goal states. + if goal
state too far, will not provide any useful info
on termination otherwise)
MinMax Algorithm
- Perfect, Deterministic, Assumes both P’s

(Max, Min) play optimally

$
- Only O(bd) nodes need be kept in memory

at a time
- If Min doesn’t play optimally, Max will do

even better.
- Implemented as DFS
- Assumptions: branching factor b, all

terminal Nodes ad depth d.
- Optimal: Yes.
- Time: O(b^m) as in DFS – main Problem.
- Space: O(bm) as in DFS
Alpha Beta Pruning

$

$
- Pruning doesn’t effect final result
- Worst Case: No Pruning: O(b^d)
- Best Case: Perfect Ordering O(b^(d/2))
Imperfect
[Both MinMax & AlphaBeta require too
much time]
i.e. Heuristic Evaluation at leaf nodes.
- Probs: Horizon Effect (hidden pitfalls)
- - Soln: Evaluation f() should be applied

onlty to positions that are quiescent,
unlikely to change extremely in near future.
+ Secondary Search, extending search to
make sure there’s no hidden pitfall.

ExpectMinMiMax
(Non-deterministic Games)
- Time: O(b^m . n^m) n=# of distinct dice

rolls.

$!!!!!!!!

!
Machine Learning [Supervised,
Unsupervised, Reinforced, Associations
Learning] !
Supervised Learning
(Classification - categorical, 
Regression - Numeric)
NEAREST NEIGHBOUR
- (or distance/instance-based learning)
- An eg. of Lazy Learning, stores all training

eg.s + doesn’t build a classifier until new
eg. needs to be classified. - Opposite to
Eager learning (constructing classifier
before recieving new eg.s, like1R,DT,NB..)

- Lazy classifiers are Faster at
training(=memorizing), but Slower at
classification.

- Nearest determined by distance

$
- Need for Normalization, as when

calculating distances between 2 examples,
the effect of the attributes with smaller
scale will be less significan than those
larger. i.e. Normalize (between 0 and 1)

- Training=Fast, no model built, just storing.
- Classification>Lookup: O(mn), m training

examples w/ dimensionality n.
- Memory: O(mn), need remember each eg
- BAD for large datasets, slow.
K-Nearest Neighbour
- k majority voting
- Very Sensitive to value of k, general rule:

[k ≤ sqrt(#training_egs)]
- Also usable w/ numeric prediction

(regression) by averaging values.
- Distance for Nominal Attributes: 

0 - ∂ the same, 1 otherwise
- for Missing Values:  

0 - both same & NON-MISSING, else 1 
(if numeric, d=max(v, 1.0-v))

- d((red, new, ?, ?, ?),(blue, new, ?, 0.3, 0.8))
= 1 + 0 + 1 + 0.7 + 0.8

- Variation: Weighted Nearest Neighbor
- Closer neighbors count more than distant

neighbours. Instead of k, all training egs.
- Weight Contribution based off distance to

new example:

$ -ve: slower algorithm
- Curse of Dimensionality: NN great in low

dimensions (up to 6), but become
ineffective as dimensionality increases. As
more examples are far from one another,
and close to the boundaries. (Notion of
nearness becomes ineffective in high-dim
space) 
Soln: Feature selection (attrs) to reduce
dimensionality.

- Produces arbitarially shaped decision
boundary defined by a subset of the
Voronoi edges.

- Sensitive to Noise
- Standard algorithm makes predictions

based on LOCAL info. 1R, DT, NNs, try to
find a GLOBAL model that fits training set. !!!!!!!!!

!
1-RULE
- For each attribute value makes rule by

majority class. Calculates error rate of
rules. Chooses rule w/ smallest error rate.

- Missing Values: 
Treated as another attribute Value

- Nominal Attributes are discretized to
nominal. - May lead to overfitting due to
noise in data - Soln: impose min num of
egs of majority class in each partition,
merge.

- Simple, Computationally Cheap. !
NAIVE BAYES
(Statistical-Based Classification)
- P(H|E) = P(E|H).P(H) / P(E)
- P(yes|E)= P(E1|yes).P(E2|yes).P(yes)/P(E) 

• (all P(Ex|yes) have same denominator)
- Assumes attributes are equally important

and independent of one another.
- Laplace Correction to handle Zero-

Numerators. (add 1/Num_Attrs to all attrs.)

 $
- (note, in tut examples, only the value is ∂d, not cousins)
- Missing Nominal Values: Ommit Value

from P(yes|E) and P(no|E) counts.
- If Numeric: Calc. Probability Distribution

using the Probability Densitiy Function
(assuming normal distribution). µ=mean,
Ó=sd.

$ $
- +ves: • simple,  

• Excellent Computational Complexity:
Requires 1 scan of the training data to
calculate statisics (for both nominal &
continuous attributes assuming normal
distribution). O(pk), p=#training_egs,
k=valued_attributes 
• Robust to isolate noise points (avgd out)

- -ves: • Correlated attributes reduce power
(violation of independence assumption) -
Soln: feature selection b4hand. 
• many numeric features not normally
distrubted - Soln: other types of
distributions /transform attribute to normally
distributed one /discretize data first. !

Evaluating Classifier
- Holdout Procedure - split data into 2

independent sets;Training & Test (~2/3,1/3)
- Accuracy (Success Rate) = 1.0 - Error Rate
- Validation Set (for DTs, NNs) - Classifier

built from Training Set, - Tuned w/
Validation Set, Evaluated w/ Test Set. 
• DTs - training set used to build tree,
validation set used to prune, test to eval 
• NNs - validation set used to stop training,
prevent overtaining.

- Prob: egs in training set may not be
representative of all classes. 
Soln: Stratification, ensures each class is
represented w/ ~= proportions in both sets.

- Holdout more reliable by repeating
(Repeated Holdout Method) - which can be
improved by ensuring Test sets don’t
overlap - Cross Validation.

- Leave-One-Out Cross Validation - n-fold
cross-validation, where n=#Egs in data set. 
• +ve: greates possible amount of data
used, deterministic procedure. 
• -ve: high computation cost 
i.e. more useful for small data sets !!

!
Comparing Classifiers

!

!
Confusion Matrix
(remember accuracy=(tp+tn)/(tp+tn+fp+fn))

$
Where retrieved=#retrievedDocs, relevant=#relDocs
Precision = (R+R)/Retrieved
Recall = (R+R)/Relevant !
Inductive Learning
- Supervised Learning is Inductive Learning.
- Induction: inducing the universal from the

particular.
- We can generate many hypothese h, the

set of all possible h form the hypothesis
space H, a good h will generalize well (i.e.
predict new egs correctly).

- Choice of H important (eg sin.f() vs polyn).
- Empirical Evaluation: - best thing we can

do. (Test data). !
DECISION TREES
- (top-down recursive divide-and-conquer)
- Growing the tree: hill climbing search

guided by information gain.
- Can represent any boolean function.
- Compact Decision tree with most pure

(high entropy) attributes. Entropy is
measured in bits. For binary classification;
value:0.5=1bit, value:0or1=0bit.

- Entropy H(Y) measures: • the disorder of a set of
training egs w/ respect to class Y. • shows the
amount of surprise of the receiver by the answer
Y based on probability of answers • the smallest
of bits per symbol (on avg) needed to transmit a
stream of symbols drawn from Y’s distribution.

- Information Gain is the expected
reduction in entropy caused by the
partitioning of the set of examples using
that attribute.

$
- (DT: The best attribute has Highest Gain)
- Overfitting, due to DTs growing each

branch deeply to perfectly classify, coupled
with noise in training data, +/or small
training set. Soln: Pre/Post-Pruning.

- Stop Pruning: Estimate accuracy w/
validation set (acts as safety net), however
tree is built on less data.

- Post-Pruning > Tree Pruning: 
• Sub-Tree Replacement:  
 - start from leaves+work to root.  

 - $  
 - continue iteratively till further pruning=harmful  
• Sub-Tree Raising 
 - potentially time consuming operation,
restricted to raising the sub-tree of most
popular branch.

- Post-Pruning > Rule Pruning: 
• Grow Tree • Convert tree to equivalent set of rules by
creating 1 rule per path (if statement) • Prune each rule
by removing any pre-conditions that result in improving
estimated accuracy • Sort pruned rules by estimated
accuracy, consider in this sequence when classifying
subsequent instances. 
• Converting DT to Rules Be4 Pruning: Provides
bigger flexibility, when trees are pruned; can
only remove node completely or retain. when
rules are pruned there are less restrictions: pre-
conditions, not nodes, are removed. each branch
in tree (i.e. each rule) treated separately.
removes distinction between attribute tests that
occur near the root of the tree and those near the
leeves.  
• +ve > trees, easier to read.

- Numerical attributes need discretization, in
DTs we’re restricted to binary split.

- Problem: if an attribute is highly-branchng
then likely selected by Information Gain,
can lead to Overfitting.  
Soln: Gain Ration, a modification of the
Gain that reduces its bias towards highly
branching attributes.

$
- Missing values: handled by • unique value

• A(x)=most common value among training
egs at n w/ class(x) • sample fractioning
strategy - assign probability to each
possible value of A, calc prob.s, use
frequencies of values of A among
examples at n

- Attributes w/ Different Costs, Incorporating
cost in Gain (penalizing attrs w/ high cost)

- $
- Efficient:  

• Cost of Building tree O(mnlogn), n-
instances and m attributes. 
• Cost of pruning tree w/ sub-tree
replacement O(n) 
• Cost of pruning by subtree lifting  
O(n(logn)^2) 
• ∑ (build+prune): O(mnlogn)+O(n(logn)^2)

- Resulting Hypthoese Easy to interpret by
humans if DT not too big. !!!!!!!!!!!!!!

!
NEURAL NETWORKS
(Perceptron - StepTransferF(), Forms linear Decision Boundary)

$

$
- Limitations: • Binary Output • if training

examples are linearly separable,
guarantees a soln in finite # of steps.  
• Doesn’t try to find ‘optimal’ line.

- (The weight vector is orgthoganal to the
decision boundary.) !

BACKPROPAGATION ALGORITHM
- (Powerful, Can learn Non-Linear Decision

Boundaries, but difficult to Tune)
- (Uses Steepest descent algorithm for

minimizing the mean square error)
- Multi-Layer NNs trained w/

backpropagation popular.
- To learn input-output (I/O) mapping - Error

F() formulated (eg. ∑ of squared errors
between target & actual output) & use a
learning rule that Minimizes this error.

$
- a Feedforward netowrk, a Fully conected

network (typically), weights initialized to
small rand. values.

$
- Numerical data requires no Encoding,

unlike nominal - typically binary encoded.
- Output Encoding:

$
- Heuristic to start w/ : 1 hidden layer w/ n
hidden neurons, n=(inputs+ouput_nurons)/2
- BackPropagation (BP) adjusts weights

backwards by propagatong the weight ∂.
- An optimization search (hill climbing) in the

weight space. Using Steepest Gradient
Descent, ∏ learning rate, definies step
(quickness moving downhill). May not find
global min. (local instead).

- Can adjust weights by: 1. Incremental -
after each training example is applied -
liked.requires less space. 2.Batch - weights
adjusted once all training examples are
applied and a total error calculated.

$

$

$
- Every Boolean f() of incputs can be

represented by network with a single
hidden layer.

- Any continuous f() can be approximated w/
arbitrary small error by a network w/ 1
hidden layer. Any f() (inc. discontinuous)
~‘able to arbitrary small error by a network
w/ 2 hidden layers.

- Overfitting, occurs w/ Noise, OR when #
of free (trainable) params is bigger than #
of training examples. OR network been
trained too long. 
Soln: • Use network that’s “just large enuff”,
• network shouldn’t have more free params
than there are training egs. 
• Validation Set can be used to STOP
traning if error increases for a pre-specified
of iterations, the weights,bias’ at the min.
are returned. 
• Prob w/ Validation Sets: Small data sets.
Soln 2x: K-Fold Cross Validation, get mean
number of optimum epochs. Final Run:
train network on ep_mean.

- With Gradient Descent:  
Small Learning Rate = slow Convergence. 
Large Learning Rate = oscillation,
overshooting of minimum. Momentum
used to stabilize the algorithm.

$
- (All layers have bias’ !input)
- (BP iterates till it minimizes the sum of the

squared errors of the output values over all
training examples). !

Support Vector Machines
- 1. Maximize margin.
- 2. Transform data into a higher

dimensional space where it’s more
likely to be linearly separable 
(not to high tho, overfitting danger)

- 3. Kernel Trick - Do calculations in the
original, not the new higher di. space.

 $
(“Kernel function of the new vector and the
support vectors”, instead of dot product)
(Mercer’s T: restricts the class of usable f()s K)
- Scales well in high dimensions.
- Multi-Class problems need to be

Transformed to 2 class problems.
(Slows them down).

- Compared to Perceptrons (‘linear
only’), and Backpopragation NNs
(‘tuning,localMinima’) (which SVM can
reduce too), SVM’s: are relatively
efficient training algorithms that can
learn non-linear decision boundaries.

- SVM: an optimization problem using
Lagrange multipliers (/\) to maximize
the margin of the decision boundary.

- Margin Width: d=2/||w||
- Linear Constraint: $

$

$
w: the optimal decision boundary:

 $
- Soft Margin: allows some

misclassifications. Tradeoff between
margin width & #misclassifications.
Soln is same as w/ hard margins but
there is an upper bound C on values
of /\s. !

Ensemble of Classifiers
[Works when individual classifiers are highly
accurate and diverse (uncorrelated, don’t
make same mistake. Generated by
manipulating ...), & when base classifiers are
good ‘nuff i.e. better than random guessing] 
[Enlarges Hypothesis Space]
 |
(Manipulating Training Data)
Bagging “Bootstrap Aggregation”
- Majority Vote
- • Creates M Bootstrap samples • each

sample used to build a classifier • classify a
new eg by getting majority vote

- Effective for Unstable classifiers, (small ∂s
in the training set results in large ∂s in
predictions, e.g. DTs, Neural Networks). 
May slightly decay performance of stable
classifiers (e.g. k-nn).

- Applicable to regression (votes avg’d)
Boosting
- Combo of weighted votes
- • each training weight has associated

weight • higher the weight, more imporant
the eg during training.

- • training eg weights init = 1 • generate
classifier • correctly classified egs decrease
in weight + vice versa • repeat • finally
combine the M hypothese, each weighed
according to performance on training set

- Adaboost - typically performs better than
individual classes.  
- If base learning algorithm is a weak

learning algorithm, then AdaBoost will
return a hypothesis that classifies the
Training data Perfectly for Large enough M.

- Boosting fails if indi. classifiers 2 ‘complex’
- Boosting allows building a powerful

combined classifier from Very simple ones,
eg. Simple DTs generated by 1R.

Bagging vs Boosting
- Similarities: • Use voting (for classification)

and averaging (for prediction) to combine
the outputs of the individual learners. •
Combimes models of the Same Type

- Differences: • Bagging builds individual
models separately, Boosting builds them
iteratively. • Bagging weighs opinions
equally, Boosting weights by performance.

- Boosting, typically more Accurate.
- but Boosting more sensitive to Noise.
 |
(Manipulating Attributes)
Random Forest
- Bagging & Random selection of features 

(this generates diversity, reducing
correlation)

- Proven that RF does not overfit.
- RF Faster than Adaboost, gives

comparable accuracy results.
 |
(Manipulating Learning Algorithm)
- Same learning algorithms applied to same

dataset but w/ ∂ params (e.g. NNs w/ ∂
architecture / params). Train them on
same training data to create M classifiers,
which can output a Majority Vote.

 |
(Using a Meta-Learner)
Stacking
- Instead of voting, uses a (level-1)

metalearner to learn which (level-0) base
classifiers are reliable.

- Seperates training data into training,
validation sets, trains level-0 classifiers,
applies validation set to classifiers and use
the predictions to build training data for
level-1 model above

- - could use cross validation instead of
training & validation sets. Slow, but allows
level-0 full-use of data.

- level-0 base learners do most work, level-1
can be just a simple classifier.

- Can be applied to numeric predictions,
instead of a class-value a numeric target
value is attached to level-1 training eg !!!!!!!!!!!!!!!!!!!!!!!!!!!

Unsupervised > Clustering
(don’t know class labels, may not know
#classes, want to group similar egs)
[Single link (MIN), Complete link (MAX),
Average link (avg distance between each
element in one cluster to each ele. in other)
Centroid, Medoid]
{ Good Clustering produces: High Cohesion.
High Separation. as measured by a distance
function such as Davies-Boulding index
(prefferably small) }

$
[Types: • Partitional - creates one set of
clusters • Hierarchical • Density-based •
Model-Based (generative) • Fuzzy Clustring]
K-Means Clustering Algorithm
- Requires k, #clusters, to be specified.
- • select K points as initial centroids •

(Repeat: • form K clusters based on closest
centroid • recompute centroid of each
cluster) Until: Centroids don’t ∂

- Issues: • data should be normalized 
• nominal data needs to ∂ to numeric 
• #epochs for convergence typically much
smaller than #points, converges quickly :)  
• Stopping Criterion usually e.g. <1%, not
==. • SENSITIVE to choice of Initial Seeds
(could run several times w/ ∂ initial
centroids)

- Not sensitive to order of input egs :)
- Doesn’t work well for clusters w/ non-

spherical / non-convex shapes.
- Doesn’t work well w/ data containing

Outliners (Soln: preprocess, cut outliers)
- Space: Modest; O((m+k)n), m=#egs,

n=#attributes, k=#clusters
- Time: Expensive; O(tkmn), t=#iterations
- Not Practical for Large datasets.
- Can be viewed as an optimization problem;

find k clusters that minimize SSE.
- May find local minimum instead of global.
- Variations: • improving chances of finding

global min. ; ∂ ways to initialize., allow
splitting&merging of clutsers. 
• can be used for hierarchical clustering, w/
k=2 & recursively :|| w/ each cluster.

K-medoids
- Use medoid instead of cluster means.
- Reduces sensitivity to outliers

$
- Computationally expensive, not suitable for

large databases: Time: O(n(n-k)), Space:
(O(n^2)-needs proximity matrix).

- Doesn’t depend on order of examples.
- Can be used when oly Distances are given

and not raw data.
Nearest Neighbor Clustering Algorithm
- 1 pass algorithm, Partitional algorithm.
- Sensitive to Input Order.
- Puts ite,s in cluster of itself, single-link

distance between item and new cluster,
threshold t determines merging/creation.

- Space & Time: O(n^2), n=#items !!!!!

(Hierarchical Clustering) !
- Suitable for domains w/ natural nesting

relationships between clusters
- Computationally Expensive, limiting

applicability to high dimensional data :( 
Space: O(n^2), n=#items, to store proximity
distance matrix & dendrogram. 
Time: O(n^3), n levels, at each of them,
n^2 proximity matrix must be searched &
updated (reducable to O(n^2 .logn) if
distances store in sorted list.

- Not Incremental, assumes all data static.
Aglomerative Clustering
- bottom up, merges clusters iteratively (w/

single-link (min) clustering)
- • d=0 • compute proximity matrix • let each

data pt be a cluster • (Increment d, merge
clusters w/ dist ≤ d, update Proximity
Matrix [DRAW] :||)

- using Complete Link, is less sensitive to
Noise and Outliers than Single Link.
Generating more compact clusters.

Divisive Clustering
- top-down, splits clutster iteratively. reverse

of agglomerative, less popular.

